Electrochemical ammonia production on molybdenum nitride nanoclusters.

نویسندگان

  • J G Howalt
  • T Vegge
چکیده

Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen covered or a clean Mo nanoparticle. Calculations presented here show that nitrogen dissociation at either nitrogen vacancies on a nitrogen covered molybdenum particle or at a clean molybdenum particle is unlikely to occur under ambient conditions due to very high activation barriers of 1.8 eV. The calculations suggest that the nitrogen will be favored at the surface compared to hydrogen even at potentials of -0.8 V and the Faradaic losses due to HER should be low.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduct...

متن کامل

DFT based study of transition metal nano-clusters for electrochemical NH3 production.

Theoretical studies of the possibility of producing ammonia electrochemically at ambient temperature and pressure without direct N2 dissociation are presented. Density functional theory calculations were used in combination with the computational standard hydrogen electrode to calculate the free energy profile for the reduction of N2 admolecules and N adatoms on transition metal nanoclusters in...

متن کامل

Single-Crystalline Mesoporous Molybdenum Nitride Nanowires with Improved Electrochemical Properties

We report single-crystalline mesoporous molybdenum nitride nanowires (meso-Mo3N2-NWs) prepared by topotactic reaction using single-crystalline molybdenum oxide nanowires. The single-crystalline nature of meso-Mo3N2-NWs was clearly observed by field-emission transmission electron microscopy. The meso-Mo3N2-NWs exhibited mesoporous structure with 45 m/g in specific surface area and 4.6 nm in aver...

متن کامل

Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design.

Commercial design of a sustainable route for on-site production of ammonia represents a potential economic and environmental breakthrough. In an analogous process to the naturally occurring enzymatic mechanism, synthesis of ammonia could be achieved in an electrochemical cell, in which electricity would be used to reduce atmospheric nitrogen and water into ammonia at ambient conditions. To date...

متن کامل

Synergy between molybdenum nitride and gold leading to platinum-like activity for hydrogen evolution.

Reduced size and direct electrochemical H2 compression are two distinct advantages of electrolyzers based on the acid-polymer electrolyte membrane technology over those relying on alkaline electrolytes. However, recourse to catalysts based on the scarce platinum-group-metals has hitherto been the price to pay. While the transition metal sulfides and nitrides of group VI have recently shown inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 48  شماره 

صفحات  -

تاریخ انتشار 2013